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CONSTRUCTION OF A GAME'S VALUE IN CERTAIN FIXED-TIME DIFFERENTIAL GAMES* 

V.I. UKBOBOTOV 

A procedure is given for the construction of a maximal u-stable bridge /l/ in a 
fixed-time nonstationary game. A procedure is suggested for the construction of 
the game's value for two classes of fixed-time games. Examples are presented. 

1. Let us consider a controlled process whose equations of motion are 

z' = - u + u, z E R", v E v (t), u E u (t) (1.1) 

A segment Z = [O, pl of the real line is specified. For each t=Z the sets u(t) and V(t) are 
compacta in R” and are Lebesgue-measurably dependent on t on segment Z /2/. Afunction A (t)> 

0, smmable on segment I, exists such that for each 1~ Z the sets U(t) and V(t) are con- 
tained in a ball of radius A'(t)with center at the origin. A closed set Xc Rn and a con- 
tinuous function g: X +Rwhose values on set X are bounded from below by a number s0 are 
specified. 

The goal of the first player, choosing the control u, is to realize the inclusion .z@)E 
X and to make the value of g(z(p))as small as possible. The second player's goal is the 
opposite. The game is played with discrimination of the second player /3,4/. The method 
proposed in /3/ for stationary games will be used to find the game's value. 

Let a set ZC R” and the numbers O,< tQ r<<p be prescribed. We denote 

T,‘(Z)=(Z+Su(r)dr)-SV(r)dr (1.2) 
! t 

Here x denotes the geometric difference of two sets /4/. For each e > E,, we consider the 
set 

X (E) = {ZE X : g (4 < e> (1.3) 

We construct a maximal u-stable bridge /l/ w(t, e) going onto set (1.3) at the instant p. 
This means that: 1) W (p, e) = X (e); 2) TtT (W (‘c, e)) 3 W (t, E) for all O<t<TgP; 3) if the 
point z (O)E W(O,e), then a finite collection of numbers O<z,<. . .(T,,, = p exists such 
that 

z(0)~'TOh(T~~(...T~~(X(e))...)) 

For each 0 < t<p we set 

W1 (t, e) = TtP (X(e)), . . . , w*+l (t, 8) = n 
l-Z&P 

Tt’(W (T, E)) (1.4) 

As was done in /5/ for stationary games, we can show that 

w&e) =kQIWk(t* e) (1.5) 

Lemma 1.1. Let numbers 0 < t(e)< p and k > 1 exist such that wk(t, e) = W'"(t, e) for 
t(e)<ttgP. Then W (t, e) = W’ (t, e) for t (e) Q t < p. 

LelTlllla 1.2. Let the hypotheses of theprecedinglemma be fulfilledawith t(e)> 0 and let 
a sequence ti+ t(s), t, < t(e), exist such that the sets Wk(ti,e)are empty. Then 
Wk (t, e) for t (e) Q t < p and the sets W (t, e) are empty for 

W (t, e) = 
0 < t Q t (e). 

These lemmas are proved with the use of equalities (1.4) and (1.5) /5/. 
Let the initial value z (0) = z be prescribed. Then /3/ the value G(z) of the game be- 

ing analyzed equals 

G (z) = inf {e > e, : ZE W (0, e)} (1.6) 

The general arguments presented will be used below to find the game'svalueinconcrete classes 
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of games. We note that another method, based on sequential procedures of game value construc- 
tion, was examined, for example, in /6-8/. 

2. Let us consider the case when the constraints imposed on the choice of control u and 
the payoff g: R”-+R have a special form, and the terminal set is X = Rn. The vectors x1,_ 
. . z,,,z~+~ from R”are specified and the first n of them are linearly independent, while the 
coefficients fi in the expansion +r = flxl -E- . . . f f,x, are negative. Nonnegative and con- 
tinuous scalar functions a, (t)(i = I...., n + 1) are prescribed on segment [O,p]. Then, de- 
noting the scalar product in R"by (x, u), we take 

~(~)={uER~:(T~,U)~U,(~), i=i,*.., n+l) (2.1) 

g(z) = max (xi, u) 
IG=3+1 

(2.21 

From the constraints imposed on vectors r1 it follows that g(z) )O for any se R* and (I . 1 
is the vector's length) 

g(z) > 0 for Iz I> 0 (2.3) 

We note certain properties of polyhedrons of form (2.1). Let the numbers blk,..., bntlk(k = 1, 
2, 3) be prescribed. We set 

Rk = (2 E Rn : (xl, 2) < bik, i = 1,. . ., n + 1) (k = 1, 2, 3) 

Lemma 2.1. Polyhedron (2.4) is not empty then and only then 

(2.4) 

PrOOf. Polyhedron 12.4) is not empty then and only then /9/ there do not exist A, > 0 
such that n+1 %+I 

zihi~i = 0, z, lib: = - i 

Substituting .zn+l = fir1 + ,.. -tjnz, into the first equality and taking into account that the coef- 
ficients fi<O and that the vectors zi(i= i,..., n) are linearly independent, we obtain the 
lemma's assertion. 

Lemma 2.2. Let inequality (2.5) be fulfilled, then polyhedron (2.4) is bounded. 

Proof. From inequality (2.3) it follows that ming(z)= m >O, where the minimumis taken 
over all z ER",[z~= 1. For an arbitrary vector ZEB* we have I 2 I m 4 g (4 < max (bit). 

Lemma 2.3. Let three not empty polyhedron (2.4) be prescribed, and let bi3 = hi’ + bi2 
for i = 1,. . ., n + 1. Then B3 = RI + LP. 

Proof. The inclusion B”+B~c E3 follows from the definition of the sum of sets. Let 
the point z ~8~. To prove the inclusion zesBl+LP it is sufficient to find a point I E B' 

such that Z-ZEB? Such a point ZEBU exists if the following system of inequalities is 

consistent: 
(,ziT 3) < biL, (-21, 3) 6 bia - (q. z), i = 1, . ., n + 1 (2.6) 

For system (2.6) to be consistent it is necessary and sufficient /9/ that there do not exist 
X,> O,pi>O such that 

ni-1 n-t1 
$z,T,('i-pi) 5% = 0, i~,(',',l+~<bi'~-~< ('i, 2)) c--1 (2.7) 

We take l,&O,pi>O satisfying the first equality in (2.7) and we show that 

n+l n+1 
r, pi (si, z)Q i~,(&'+@<) (2.8) 
i=* 

This proves that the second equality in (2.7) is not fulfilled. By hypothesis the point z 
satisfies the system of inequalities (zi, z) Q biz + bi2, i = 1. . ., R + 1. Multiplying these inequal- 

ities by X,,pi* summing, and taking into account the first equality in (2.7), we get that in- 
equality (2.8) is fulfilled if the right hand side in (2.8) is not less than even one of the 
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Lemma 2.4. Let B be a compactum in R”, while bi = max (zi, z), where the maximumistaken 
over z E B. Then Bl-LB = Be with the numbers bia = bil - b,. 

The proof is analogous to that of Lemma 2.1 in /5/. 
Let us now to construct the sets (1.2) and (1.5) in the game at hand. From formula (2 .2) 

it follows that for each a> 0 the set (1.3) has the form 

We denote 
X (E) = {ZE R": (5ir Z) < e, i = 1,. . ., n + 1) (2. 11) 

following two numbers: 

Tp,(6;+b:), ;&+(":+Y) 
i=l 

It remains to show that at least one of the following inequalities is valid: 

n+1 n+1 
x (a,-pJb;>o, 3 (Pi--kAi)bi">,O (2.9) 
*=1 i=l 

From the first equality in (2.7), allowing for the expansion of vector z,,+~, we obtain h, - 

Pi = (CL"+1 - %l+,+l) fi - We rewrite inequality (2.9) in the equivalent form 

(P'n+1- h,+l)( 5 f&l- b:++O. 
i=, 

(%,+z - I',,+@ fib: - b:+,)>O 

From here and from the condition not empty (2.5) it follows that one of the inequalities in 
(2.9) is valid. 

From the lemmas we have proved it follows that for each tE 10,~) the set (2.1) is a not 
empty convex compactum in R". Using Lemma 2.3 we can show that 

~u(t)dt=[~~~:(z,,z)~Sla,(t)dt,i=l.....n+*) (2.10) 

(1 h 

for any O<tl<ta<P. 

b,(t)= max(q, U)(U E V (t)), 
D 

vi (t) =I (ai (7) - bi (7)) 4 (2.12) 
t 

Then, using the two preceding lemmas and equalities (2.10), (2.11), from formulas (1.2), (1.4) 
we obtain 

We denote 

W' (t, e) = {z E R” : (q, z)< E + vt (t), i = 1,. . ., n + 1) (2.13) 

t(e) = inf {t > 0 : 8 + v 71+1(T) >*jl(e + vi(z))fi for t<r<<p} (2.14) 

Then, as follows from Lemma 2.1, the set (2.13) is not empty for all t(e)< t<<p. Using the 
same arguments as in the proof of equality (2.13), we can show that TtP (x (s)) = T,'((TxP (x (8))) 
for t(e) < t<r<p. Hence from (1.4) it follows that w (t. E) = w’(t, e)for t(e)< t<p. Let 

t(E) = 0. Then from Lemma 1.1 we obtain that kV(t,e) = w(t,e) for O,< t<<p. If t (a) > 0, 
then from the definition (2.14) of the number t(e), equality (2.13) and Lemma 2.1 follows the 
existence of the sequence of numbers tt + t (e), ti < t (E), such that the sets W'(t,, e) are empty. 
By Lemma 1.2 the set W(t,e) is empty for O < t< t(e), while for t(e)< t<p it coincides 
with set (2.13). 

The value G(z) from (1.6) of the game being examined equals the smallest of the numbers 
e >O satisfying the following two conditions: 

t (E) = 0, max (h 4 - vi (0)) < e (2.15) 
lCiGl+l 

The first one of them signifies that W(O,e) = PV(O,E). As follows from (2.13), the second con- 
dition signifies the inclusion ZE Wl(O, e). 

Example 2.1. The equations of motion describing the game are 
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An instant p>O is specified. The first player, choosing control W? strives to minimizethe 
quantity max I($7 Y (P) --Z (P))l, where the maximum is taken over i = f,. .) n + 1. We introduce new 
variables: z = y - z - (p - t) z:‘, u = (p - t) ID. We obtain the equivalent game 

g(Z)=max(zi,+, I'=--U+v, (zi9U)<(P-_t)6i,]7J]<h 

In the present example the functions (2.12) equal 

We denote 
bi (t) = h I .q 1 = bi, vi (t) = 2-1 (p - t)*& - (p - t) bt 

Then the conditions (2.15) for finding the game's value become 

e > bt - (6tP)i2, 0 < t < P 

Hence we determine the game's value 

G (4 = max (@ (2, P); bp - (@9/2), p < b/6 

G (z) = max ((I’ (z, p); b’/ (26)). p > b/6 

3. Let us consider the case when v(t) = a(t)S and 

Here x1, . . ., x,, 
S is a convex 
continuous and 
the aid of the 

Lemma 3. 
Then 

CJ (t) = E l-P: ni (t) < (q, < Ai i 1, . ., 

is some basis in ai (t)< Ai = 1, . ., n) are 
in as a (t) is a 

nonnegative scalar function defined on 

ES} =+ X (E) = {z : g (z) < E} = ES (3.2) 

1. Let B be a closed convex set in Rn and let 8 and 6 be nonnegative numbers. 

The lemma 
convex set. 

We denote 

- 

(t-6)S+ B, e>6 
B:(6_ee)S, e<6 

can be proved by bringing in the notion of the support function of a closed 

p(e)=infk:O<t<p, s> a(r)dr 5 (3.3) 
t 

Then, as follows from Lemma 3.1 and formulas (1.2), (1.4), 

W'(t,e)=(r-~a(r)dr)S+~u(r)dr. P (8) < t < P (3.4) 
t * 

W’ (t, E) = (‘s cl (T) d7) LPr, a (z) dd, t < P (e) (3.5) 
t t 

We denote B, = mar (zi, s), b, = min(ri, s) (the maximum and minimum are taken over SE S) and for 

0 < t Q P (e): 

v,(t,E)=5ai(r)d~-_iP~a(z)~~, 
t t 

pl(t,e)=fAi(@dT--- B,PSc)a(r)dz 
t 

(3.6) 

Then, as was shown in /5/, a set of form (3.5) is specified by the inequalities 
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w’ (t,E) = {ZER” :Yi (t, 8)< bjr z)< pi (t, E), i = 1,. . ., n) (3.7) 

We set 

Then for t(e)< t<p the sets w'(t, e), and for t (e)< t<p(e) they have the form (3.7), while 
for p(e)\<t<p, the form (3.4). Using Lemma 3.1, as well as Lemmas 2.1 and 2.2 from /5/,we 
can prove the equality w (t,e) = W’(t,e) for t(e)< t<p and, therefore, w (t, E) = p (t, E). 

If t (e) > 0, then, as in Sect.2, we get that the sets W(t,e) are empty for 0 < t < t (e). The 
game's value is found from condition (1.6). 

Example 3.1. Consider Example 2.1. We shall reckon that the constraints on u are the 
same, but the constraints on UI and on the payoff g(z) have the form 

- 6(q<$(i=l,..., n), g(r)=lzl 

If we denote zi=(O,..., 1, . . ..O) (the one is at the i-th place), as S we take a Euclidean ball 
of unit radius, and pass, as in Example 2.1, to the variable z, then we obtain the equivalent 

game 
2' = -U + v, -(p - t) 6 < (q, u) d (p - 0 6, u E AS (3.9) 

The number p(e)=p-e/b for Ode< hp and p(e)=0 for @lip. Therefore, for e>Ap the set W&e) 
is specified by the right-hand side of equality (3.4) with t=O. If we denote Q = (IE R”: 

-l<(z,,z)<1,i=i ,..., n), then, as follows from (3.9), 

V(t) = (p- t)8Q, f II (T) dz = 2-‘6#Q (3.10) 
t 

Consequently 

W (0, e) = (e - hp) S -I- Z-16p*Q, e > hp (3.11) 

Let e< hp. Then functions (3.6) become 

p1 (t, e) = -vf (t, e) = 2-16 (p - t)* - h (p - t) + e, 0 < t < p - e/A (3.12) 

From (3.8) and (3.12) it follows that the condition for set W(O,e)to be nonempty or, what is 
the same, the condition t(e)=0 takes the form 

2-V++ - AT + c 20, elh < r < p (e < 4) (3.13) 

Having studied inequality (3.13), the nonemptiness 
written as 

- 2-16~~ + ?.p <e, 
P/(2@ < e, 

Under these conditions, setting t=O in (3.7) and 
Wl(O, e), we obtain 

We denote 

W (0, e) = (2-'6~' - 

condition for set W(0, E) when e<lip can be 

p < h/6 (3.14) 
P>1Jd 

allowing for (3.12) andtheequality w(O,E)= 

AP + 6) Q (3.15) 

cp (e, p) = e - Ap, f (e, p) = 2+Sp*, e > Ap 
cp (E, P) = 0, f (e, p) = 2-W - hp + e, e < Ip 

(3.16) 

Set W'(O,e) is nonempty then and only then inequalities (3.14) are fulfilled. In this case, as 
follows from (3.11), (3.15) and (3.16) 

W (0. E) = v (G P) S + f (e, P) Q (3.17) 

The support function of set Q equals Iqll+...+ I+,pnl, where +=&,.,.,$I,,). Therefore, point z 
belongs to set (3.17) then and only then /9/ 

max ((2, W - f (G P) jl I qi I) 4 ‘P (e, P) (3.18) 

Here the maximum is taken over all vectors ~#=($..,.,$,,)of unit Euclidean length. Therefore, 
the game's value G(Z) for the initial position z is determined as the smallest of numbers ~20 

satisfying inequalities (3.14) and (3.18). 
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